SAURABH S. SAWANT, PH.D.

Center for Computational Sciences and Engineering (CCSE) Applied Mathematics and Computational Research Division (AMCRD) Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

a +1-(814)-777-7497 ⊠ SaurabhSawant@lbl.gov 𝗞 saurabh-s-sawant.github.io

SUMMARY

- 10+ years of experience in developing highly scalable software using C++, message-passinginterface (MPI), and GPUs for diverse scientific applications:
 - Specialization in hypersonic flows during Ph.D. projects.
 - Focus on nanoelectronics while contributing to open-source software during postdoctoral work.
- Skilled in diverse modeling techniques, including:
 - Specialization in kinetic methods for high-temperature gas dynamics.
 - Expertise in matrix-based algorithms for quantum transport in nanomaterials.
 - Experience in linear stability analyses of compressible flows.
- 7+ years of experience contributing to collaborative, interdisciplinary projects.

EDUCATION

Department of Aerospace Engineering, University of Illinois Urbana-Champaign Thesis: The development of kinetic models and simulation methods to study molecular fluctuations, modal response, and shock-laminar separation bubble instabilities

♦ https://www.ideals.illinois.edu/items/124505 Cumulative GPA: 3.76 on a scale of 4

M.S.

Ph.D.

Dec. 2015

May 2022

Department of Aerospace Engineering, University of Illinois Urbana-Champaign Thesis: Development of AMR octree Direct Simulation Monte Carlo (DSMC) approach for shock dominated flows. ♦ https://www.ideals.illinois.edu/items/91247

GPA: 3.87 on a scale of 4

B.E.

Aug. 2011 Department of Mechanical Engineering, Vidyavardhini's College of Engineering & Tech., Mumbai University. India. Thesis: Efficiency analysis of Aerospike nozzles. Class: First Class

Postdoctoral Scholar

RESEARCH EXPERIENCE

Jan. 2022- Present Center for Computational Sciences and Engineering (CCSE) Applied Mathematics and Computational Research Division (AMCRD) Lawrence Berkeley National Laboratory, Berkeley, CA-94709, USA. Supervisor: Dr. Andrew Nonaka

I contribute to a DOE-funded project, "Codesign and Integration of Nanosensors on Complementary Metal-Oxide-Semiconductor (CMOS)", focused on developing a CMOS chip as a nanoscale photon sensor with carbon nanotubes integrated with quantum dots. In my computational role, I conduct nanoscale modeling of Carbon Nanotube Field-Effect Transistor (CNTFET) configurations and microscale modeling of transmission lines on the chip

for electromagnetic wave propagation.

- (Ongoing) A GPU-Accelerated Self-Consistent Quantum Transport Framework for Modeling Nanomaterials. Description
 - Developed a 3D open-source framework for electrostatic-quantum transport modeling of nanomaterials at exascale (ELEQTRONeX), built using the AMReX library, modern C++, GPUs, MPI. https://github.com/AMReX-Microelectronics/eXstatic
 - Quantum transport is modeled using the nonequilibrium Green's function (NEGF) method, and self-consistency is achieved using a novel MPI/GPU parallelized Broyden's modified second algorithm.
 - Conducted weak-scaling studies up to 512 NVIDIA A100 GPUs on NERSC's Perlmutter, and solver is used to model carbon nanotube field effect transistors with aperiodic arrangement of nanotubes.
- Characterization of microscale transmission lines using Maxwell's equations. **&** Description
 - Developed a workflow to compute scattering (S) parameters for microscale transmission lines and implemented it in the open-source finite difference time domain Maxwell solver, ARTEMIS.
 Automatical and the statement of the statement of
 - \bullet https://github.com/AMReX-Microelectronics/artemis
 - Demonstrated application on part of proposed transmission line for carbon nanotubes to IC inputs.
 - Conducted weak-scaling studies of ARTEMIS up to 2048 NVIDIA A100 GPUs on NERSC's Perlmutter supercomputer.

Graduate Research Assistant

Aug. 2014- Dec. 2021

Department of Aerospace Engineering University of Illinois Urbana-Champaign, Champaign, IL-61801, USA Advisor: Professor Deborah Levin

During M.S. & Ph.D., I have contributed to multiple projects in the field of hypersonics, funded by AFOSR, ONR, DoD, and NASA. A brief overview of these is provided below.

- Developed a 3-D DSMC solver, SUGAR (Scalable Unstructured Gas-dynamic Adaptive mesh-Refinement), using C++11 & MPI, with features including adaptive mesh refinement (AMR) for octree grids, 3D embedded boundaries with cutcell algorithm, Morton-based load balance, and thermal non-equilibrium models.
- Achieved ideal strong scaling speed-up up to 4096 processors and 87% weak scaling efficiency for 8192 processors in hypersonic flow simulations with shocks.
- Conducted 3-D simulations of shock-wave/boundary-layer interactions over a double wedge using 20,000 processors, exceeding two million node-hours on supercomputers such as NSF's Bluewaters, TACC's Stampede2, FRONTERA, and DoD's Onyx.
- DSMC Study of Linear Instability Mechanism in Laminar Hypersonic Separated Flow. & Description
 - Conducted spanwise periodic DSMC simulations of Mach 7 nitrogen flow over a $30^{\circ}-55^{\circ}$ double wedge at $Re_1 = 5.22 \times 10^5 \text{ m}^{-1}$ (altitude above 60 km).

- Investigated coupling of 3-D laminar separation bubble's linear instability with separation and detached shocks, identifying spanwise corrugation of shocks and low-frequency unsteadiness of the triple point at $St \sim 0.02$.
- Employed data-driven techniques like proper-orthogonal decomposition for noise reduction and dominant mode extraction. S Description
- Kinetic Study of Low-Frequency Fluctuations in One-Dimensional Shock. & Description
 - Studied shock structure fluctuations in argon, revealing two-order lower frequency variations compared to freestream, with consistent Strouhal numbers (St = 0.002 0.02) across Mach 2-10.
 - Developed Lotka-Volterra two-energy-bin model, attributing shock frequency differences to bimodal energy density functions.
 - Derived analytical formula for bimodal energy distribution as non-central chisquared (NCCS) distributions, establishing semi-analytical model to predict shock fluctuation frequencies.
- Modeling of multi-scale thermal response of an AVCOAT-like thermal protection system. So Description
 - Carried out DSMC simulations of gas transport through the microstructure of an AVCOAT-like ablative heatshield.
 - Obtained permeability and tortuosity for the AVCOAT material.
 - Developed a random walk model for coupled convection, conduction, and radiation through the microstructure.
 - Studied the thermal response of AVCOAT material with spatially varying thermophysical properties at high temperatures using the loosely-coupled DSMCrandom walk model and compared it with finite-volume approaches.

• Modeling of shock-induced dust lifting. So Description

- Implemented capability to model dust particles in the open-source FLASH solver, used to model charged particle-fluid interactions by a junior graduate student.

ACHIEVEMENTS	Argonne Training Program on Extreme Scale Computing & Co Argonne National Laboratory	ertificate	2022
	Recipient of FRONTERA Leadership Resource Allocation University of Illinois Urbana-Champaign	2020-	2022
	Recipient of AE Outstanding Graduate Student Fellowship University of Illinois Urbana-Champaign		2020
	MAVIS Future Faculty Fellows (MF3) Program University of Illinois Urbana-Champaign	Fall 2019-	2020
	Recipient of the Best Undergraduate Project Vidyavardhini's College of Engineering, Mumbai University, India		2011
Teaching Experience	Teaching Assistant (TA) Department of Aerospace Engineering University of Illinois Urbana-Champaign, Champaign, IL-61801, USA.		
	• Incompressible Flows (AE 311) Instructor: Professor Laura Villafane Roca	Spring	2020
	• Aerospace Flight Mechanics (AE 202) Instructor: Professor Huy Tran	Fall	2019
	• Incompressible Flows (AE 311) Instructor: Professor Theresa Saxton-Fox	Spring	2019

• Rocket Propulsion (AE 434)

Instructor: Professor Deborah Levin

Duties for last four TAs: Preparing homework and exam solutions, holding office hours, conducting python workshops, and lectures when instructor is traveling.

Research Associate

Dec. 2012-July 2013

Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra-400076, India

• Created open-source tutorials and conducted workshops on OpenFOAM & Salome software.

Advisor: Professor Shivasubramanian Gopalakrishnan Project: FOSSEE, National Mission on Education through Information and Communication Technology, Sponsored by MHRD, Government of India. Link: http://www.spoken-tutorial.org/list_videos?view=1 &foss=OpenFOAM&language=English

Lecturer

Atharva College of Engineering, Mumbai University, India. Jan.-July. 2012

• Engineering Drawing and CAD software packages Duties: Teaching first-year students of Mechanical Engineering, conducting workshops for CAD software packages, holding office hours, preparing homework and exams.

Journal Publications Sawant, S. S., Yao, J., Jambunathan, R., & Nonaka, A. (2023) Characterization of Transmission Lines in Microelectronic Circuits Using the ARTEMIS Solver. *IEEE Journal on Multiscale and Multiphysics Computational Techniques*, vol. 8, pp. 31-39. doi:10.1109/JMMCT.2022.3228281

Sawant, S. S., Theofilis, V., & Levin, D. A. (2022) On the synchronisation of threedimensional shock layer and laminar separation bubble instabilities in hypersonic flow over a double wedge. *Journal of Fluid Mechanics*, 941, A7. doi:10.1017/jfm.2022.276

Sawant, S. S., Levin, D. A., & Theofilis, V. (2022) Analytical prediction of low-frequency fluctuations inside a one-dimensional shock. *Theoretical and Computational Fluid Dynamics.*, 36, 25-40. & doi:10.1007/s00162-021-00589-5

Klothakis, A., Quintanilha, H., & <u>Sawant S. S.</u>, Protopapadakis, E., Theofilis V., & Levin D. A. (2022) Linear stability analysis of hypersonic boundary layers computed by a kinetic approach: a semi-infinite flat plate at $4.5 \leq M_{\infty} \leq 9$. Theoretical and Computational Fluid Dynamics., 36, 117-139. Solidoi:10.1007/s00162-021-00601-y

Sawant, S. S., Levin, D. A., & Theofilis, V. (2021) A kinetic approach to studying lowfrequency molecular fluctuations in a one-dimensional shock. *Physics of Fluids*, 33 (10), 104106. S doi:10.1063/5.0065971

Marayikkottu, V. A., Sawant, S. S., & Levin, D. A. (2021) Study of particle lifting mechanisms in an electrostatic discharge plasma. *International Journal of Multiphase Flows*, 137, 103564. Science doi:10.1016/j.ijmultiphaseflow.2021.103564

Sawant, S. S., Rao, P., Harpale, A., Chew, H. B., & Levin, D. A. (2019) Multi-scale thermal response modeling of an AVCOAT-like thermal protection material. *International Journal of Heat and Mass Transfer*, 133, 1176-1195. doi:10.1016/j.ijheatmasstransfer.2018.12.182 Harpale, A., <u>Sawant, S. S.</u>, Kumar, R., Levin, D. A., & Chew, H. B. (2018) Ablative thermal protection systems: Pyrolysis modeling by scale-bridging molecular dynamics. *Carbon*, 130, 315-324. doi:10.1016/j.carbon.2017.12.099

Sawant, S. S., Tumuklu, O., Jambunathan, R., & Levin, D. A. (2018) Application of adaptively refined unstructured grids in DSMC to shock wave simulations. Computers & Fluids, 170, 197-212. S doi:10.1016/j.compfluid.2018.04.026

Refereed Conference Proceedings

CONFERENCE PUBLICATIONS Sawant, S. S., Tumuklu, O., Theofilis, V., & Levin, D. A. (2022). Linear Instability of Shock-Dominated Laminar Hypersonic Separated Flows. In: Sherwin, S., Schmid, P., Wu, X. (eds) *IUTAM Laminar-Turbulent Transition*. IUTAM Bookseries, vol 38. Springer, Cham. & doi:10.1007/978-3-030-67902-6_57

Klothakis, A., <u>Sawant S. S.</u>, Quintanilha, H., Theofilis V., & Levin, D. A. (2021). Slip Effects on the Stability of Supersonic Laminar Flat Plate Boundary Layer. *AIAA Scitech 2021 Forum* (Paper No. 1659).

Sawant, S. S., Tumuklu, O., Theofilis, V., & Levin, D. A. (2020). Analysis of Spanwise Perturbations in Laminar Hypersonic Shock-Boundary Layer Interactions. *AIAA Scitech 2020 Forum* (Paper No. 0108).

Marayikkottu, V. A., <u>Sawant, S. S.</u>, Levin, D. A., Huang, C., Schoenitz, M., & Dreizin, E. (2020). Comparison of numerical simulations of inert particle transport in an electrostatic discharge with experimental results. *AIAA Scitech 2020 Forum* (Paper No. 1798).

Marayikkottu, V. A., <u>Sawant, S. S.</u>, Rao, P., & Levin, D. A. (2019). Study of inert simulated particle transportation in a moving shock/pressure wave generated by electrostatic discharges. *AIAA Scitech 2019 Forum* (Paper No. 0631).

Sawant, S. S., Rao, P., Harpale, A., Chew, H. B., & Levin, D. A. (2018). Micro-scale thermal response modeling of Avcoat-like TPS. 2018 AIAA Aerospace Sciences Meeting (Paper No. 0495).

Sawant, S. S., Harpale, A., Jambunathan, R., Beng Chew, H., & Levin, D. A. (2017). High fidelity and multi-scale thermal response modeling of an Avcoat-like TPS. 55^{th} AIAA Aerospace Sciences Meeting (Paper No. 0438).

Sawant, S. S., Tumuklu, O., Jambunathan, R., & Levin, D. A. (2017). Novel use of AMR Unstructured Grids in DSMC Compressible Flow Simulations. 47th AIAA Thermophysics Conference (Paper No. 4028).

Sawant, S. S., Jambunathan, R., Tumuklu, O., Korkut, B., & Levin, D. A. (2016). Study of shock-shock interactions using an unstructured AMR octree DSMC code. 54th AIAA Aerospace Sciences Meeting (Paper No. 0501).

Sawant, S. S., Korkut, B., Tumuklu, O., & Levin, D. A. (2015). Development of an amr octree dsmc approach for shock dominated flows. 53^{rd} AIAA Aerospace Sciences Meeting (Paper No. 0070).

PRESENTATIONS
ANDSawant, S. S., Léonard F., Yao, J., & Nonaka, A. (2023).A Coupled Electrostatic- Quantum Transport Framework for Exascale Systems.Intl. Workshop on
Comput. Nanotech. (IWCN), Barcelona, Spain. & Abstract pg. 84-85.

Sawant, S. S., Yao, J., Jambunathan, R., Léonard F., & Nonaka, A. (2019). A Highly Scalable NEGF Solver for Modeling Time-Dependent Quantum Transport in

Nanomaterials. The APS March Meeting 2023, Las Vegas, Nevada, USA.

Sawant, S. S., Yao, J., Jambunathan, R., Léonard F., & Nonaka, A. (2019). Multiscale Modeling of Carbon Nanotube Field Effect Transistors (CNTFETs) for Photodetection. Fourth CS-Area Postdoc Symposium, Lawrence Berkeley National Laboratory, Berkeley, USA. & Video

Sawant, S. S., Tumuklu, O., Theofilis, V., & Levin, D. A. (2019). Linear instability of shock-dominated laminar hypersonic separated flows., *IUTAM Symposium on Laminar-Turbulent Transition 2019, London, UK*.

Sawant, S. S., Rao, P., Harpale, A., Chew, H. B., & Levin, D. A. (2019). Multi-scale thermal response modeling of an AVCOAT-like thermal protection material., 11^{th} Ablation Workshop, University of Minnesota, Minneapolis, MN.

Rao, P., Sawant, S. S., Harpale, A., Chew, H. B., & Levin, D. A. (2017). Hybrid Walker Approach to Conduction-Radiation Coupling in Micro-Scale Ablation Modeling, g^{th} Ablation Workshop, Montana State University, Bozeman, MT.

Sawant, S. S., Jambunathan R., and & Levin, D. A. (2018). Multi-scale Gas Dynamic and Thermal Response Modeling of Ablative Thermal Protection Systems, 31^{st} Rarefied Gas Dynamics Conference, Glasgow, Scotland.

PROFESSIONAL	Reviewed two journal articles for the Theor. and Comput. Fluid Dyn.	2021-2022
SERVICE	Reviewed a journal article for Acta Astronautica	2022
	Reviewed a conference article for the 31st Rarefiel Gas Dynamics conference	Spring 2019